
[Rana, 3(7): July, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[746-750]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
A Comparative Study of Basis Path Testing and Graph Matrices

Aakanksha Rana, Ajmer Singh
 Department of Computer Science & Engineering,

 Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Haryana, India

aakanksha8822@gmail.com

Abstract
 Web engineers and stake holders are more concerned about competition in web application testing. Therefore

various technical activities are carried out in the process of testing a web application. Basis Path testing and graph

matrices are the two test case generation techniques of white box testing. So the idea is to generate and compare the

test cases using the flow graphs of the basis path testing and the graph matrices. It is not easy to find out all the test

cases in the program. This fundamental problem in testing thus throws an open question, as to what would be the

strategy we should adopt to find the test cases for testing. In this paper, we have compared the test cases, generated

by basis path testing and graph matrices.

Keywords: testing, test cases, path testing, graph matrices, white box testing, basis path testing, control flow graph.

Introduction
TESTING is a process of exercising software

and same philosophy is also valid for Web Application

too. Web application testing is a collection of related

activities with the aim and objective of uncovering the

errors in web application content, function, usability,

navigability, performance, capacity and security. For

testing, one should not wait for its whole development,

instead of it the testing should be started at the time

when you write one line of code. With the

development of the software industry, software testing

gradually takes a more important role in order to

assure the software quality. White box testing, which

is also called structural testing or logic-driven testing,

mainly focus on the internal logic test of the code. Its

objective is to achieve specific logical coverage

indicator, such as statement coverage, condition

coverage, branch coverage, basis path coverage and so

on. Test cases are always designed according to the

Control Flow Graphs (CFGs) [1].

A well tested software system will be validated by

the customer before acceptance. The effectiveness of

this validation and verification depends on number of

errors found which in turns depend on the quality of

test case generated.

The paper is structured as follows: Section II a

review of basis path testing, Section III a review of

graph matrices, Section IV a review of conclusions.

Basis path testing
Basis path testing is the oldest structural

testing technique. The technique is based on the

control structure of the program. Basis path testing is

a white box testing technique that is used to test the

code based on control flow. The method uses a control

flowchart and a control flow graph to convert the code

into a model and then derive independent test paths

from it. Basis path testing is a white-box testing

technique first proposed by Tom McCabe. Basis path

testing was proposed by Thomas McCabe in the

eighties of last century. Based on cyclomatic

complexity measure to CFG and specific algorithm,

independent basis paths can be created and test cases

can be design according to these paths. The steps of

implementation of basic path testing are given below:

1) Make the flow graph of the whole program

structure.

2) Calculate the cyclomatic complexity of the

given flow graph.

3) The cyclomatic number gives the total

number of independent paths that we need to

execute at least once.

4) Finally make the test cases by applying input

conditions so as to check the output of the

program structure.

Implementation of Basis Path Testing

Figure 1 shows the flow graph of the program

http://www.ijesrt.com/
aakanksha8822@gmail.com

[Rana, 3(7): July, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[746-750]

structure. In this, the total numbers of edges are 10,

and total numbers of nodes of are 8.

CFG describes the logic structure of software

components. Each CFG consists of nodes and edges.

The nodes represent computational statements or

expressions and the nodes are denoted by a circle.

These nodes are numbered or labeled where as the

edges represent transfer of control between nodes, this

is denoted by an arrow on the edge. A node with more

than one arrow leaving it is called a decision node. Each

possible execution path of a software module has a

corresponding path from the entry to the exit node of

the module’s control flow graph. This correspondence

is the foundation for the structured testing

methodology. Areas bounded by edges and nodes are

called regions. When counting regions, we include the

area outside the graph as a region. Each node that

contains a condition is called a predicate node and is

characterized by two or more edges emanating from it

[2].

Figure1: Control Flow graph of program

1) Calculate Cyclomatic Complexity:

Cyclomatic complexity can be used to measure

complexity of judge structure of a module. McCabe

was also given calculation formula of complexity of a

program structure. Cyclomatic complexity is also

known as V (G) [3], where v refers to the cyclomatic

number in graph theory and G indicates that the

complexity is a function of the graph. According to

graph theory, in a strongly connected directed graph

G, the cyclomatic number is defined as V (G) = m – n

+ p, where m is number of arcs in the graph G, n is

number of nodes, and p is number of strongly

connected components. For a program that has a single

entry and exit point, the entire module has only one

program [3], then p = 1. Program control flow graphs

are not strongly connected, but they become strongly

connected when a “virtual edge” is added connecting

the exit node to the entry node, thus the complexity

number of the module is e – n + 1. Without the “virtual

edge”, control flow graphs can be served as undirected

graphs, thus the cyclomatic number can be calculated

like this: V (G) = e – n + 2 [3]. Cyclomatic complexity

for figure 1 is calculated below:

a. The total number of regions in above flow

graph is 4.

b. V (G) = 10 edges - 8 nodes + 2 = 2+2 = 4.

c. V (G) = 3 predicate nodes + 1 = 4.

2) Total number of independent paths:

a. Path1: 1-2-8

b. Path2: 1-2-3-4-7-2-8

c. Path3: 1-2-3-5-7-2-8

d. Path4: 1-2-3-6-7-2-8

Test Case Generated

 Test case generated from the list of independent

paths:

a. For Path 1, the input test sequences are: {aj}

b. For Path 2, the input test sequences are:

{abcfij}

c. For Path 3, the input test sequences are:

{abdgij}

d. For Path 4, the input test sequences are:

{abehij}

Graph matrices
Flow graph is an effective method in path test

testing however, path tracing with the use of flow

graphs may be time consuming activity. Graph matrix,

a data structure, is the solution which can assist in

developing a tool for automation of path tracing.

Graph matrix is two dimensional matrix that helps in

determining the basic set. It has columns and rows

each equal to number of nodes in a flow graph [8]. To

distinguish from each other each node is represented

by some letter. Each edge is provided with some link

weight (0-for no connection, 1-if there is connection).

http://www.ijesrt.com/

[Rana, 3(7): July, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[746-750]

The following point describes a graph matrix:

1) Each cell in the matrix can be direct

connection or link between one node to

another node.

2) If there is a connection from node ‘a’ to node

‘b’, then it does not mean that there is

connection from node ‘b’ to node ‘a’.

3) Conventionally, to represent a graph matrix,

digits are used for nodes and letter

symbols for edges or connections.

A. Implementation of Graph Matrices

A graph matrix is a square matrix whose rows and

columns are equal to the number of nodes in the flow

graph. Each row and column identifies a particular

node and matrix entries represent a connection

between the nodes [8]. Following table 1 is the

representation of flow graph into graph matrices:

TABLE1

 1 2 3 4 5 6 7 8

1 a

2 b j

3 c d e

4 f

5 g

6 h

7 i

8

1) Connection Matrix

Graph matrix is a tabular representation and does not

provide any useful information. If we add link weights

to each cell entry, then graph matrix can be used as a

powerful tool in testing. The links between two nodes

are assigned a link weight which becomes the entry in

the cell of matrix. The link weight provides

information about control flow. In the simplest form,

when the connection exists [8], then the link weight is

1, otherwise 0 (But 0 is not entered in the cell entry of

matrix to reduce the complexity). A matrix defined

with link weights is called a connection matrix. The

connection matrix for above example is shown below.

The connection matrix for the table 1 is:

TABLE2

 1 2 3 4 5 6 7 8

1 1

2 1 1

3 1 1 1

4 1

5 1

6 1

7 1

8

2) Use of Connection Matrix in finding Cyclomatic

Complexity Number

Connection matrix is used to see the control flow of

the program. Further, it is used to find the cyclomatic

complexity number of the flow graph. Given below is

the procedure to find the cyclomatic number from the

connection matrix.

Step 1: For each row, count the number of 1s and write

it in front of that row.

Step 2: Subtract 1 from that count. Ignore the blank

rows, if any.

Step 3: Add the final count of each row.

Step 4: Add 1 to the sum calculated in step 3.

Step 5: The final sum in step 4 is the cyclomatic

number of the graph.

The cyclomatic number calculated from the

connection matrix of table 2 is shown below:

TABLE3

 1 2 3 4 5 6 7 8

1 1 1-

1=0

2 1 1 2-

1=1

3 1 1 1 3-

1=2

4 1 1-

1=0

5 1 1-

1=0

6 1 1-

1=0

7 1 1-

1=0

8 0-

1=0

 Cyclomatic number = 3+1=4

3) Use of Graph Matrix for finding Set of all Paths

Another purpose of developing graph matrices is to

produce a set of all paths between all nodes. It may be

http://www.ijesrt.com/

[Rana, 3(7): July, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[746-750]

of interest in path tracing to find k-link paths from one

node. For example, how many 2-link paths are there

from one node to another node? This process is done

for every node resulting in the set of all paths. This set

can be obtained with the help of matrix operations. The

main objective is to use matrix operations to obtain the

set of all paths between all nodes.

Next, we find 6-link set of paths of the above graph

matrix as shown below:

TABLE4

 1 2 3 4 5 6 7 8

1 ab²i

(cf+

dg+e

h)

2 b²ic

(cf

+dg

+eh

)

b²id

(cf

+dg

+eh

)

b²ie

(cf

+dg

+eh

)

3 ib(cf

+dg

+eh)

²

4 fbi²(c

f+dg

+eh)

5 gbi²(

cf+d

g+eh

)

6 hbi²(

cf+d

g+eh

)

7 i²b²(

cf+d

g+eh

)

8

B. Test Case Generated

Number of test cases by applying following input test

sequences:

1. From node 1, the input test sequences are: {a,

ab, aj, abc, abd, abe, ab(cf+dg+eh),

abi(cf+dg+eh), ab²i(cf+dg+eh)}.

2. From node 2, the input test sequences are: {b,

j, bc, bd, be, b(cf+dg+eh), bi(cf+dg+eh),

b²i(cf+dg+eh), b²ic(cf+dg+eh),

b²id(cf+dg+eh), b²ie(cf+dg+eh)}.

3. From node 3, the input test sequences are: {c,

d, e, (cf+dg+eh), i(cf+dg+eh), ib(cf+dg+eh),

ij(cf+dg+eh), bci(cf+dg+eh), bdi(cf+dg+eh),

bei(cf+dg+eh), ib(cf+dg+eh)²}

4. From node 4, the input test sequences are: {f,

if, ifb, ifj, fbci, fbdi, fbei, fbi(cf+dg+eh),

fbi²(cf+dg+eh)}.

5. From node 5, the input test sequences are: {g,

ig, igb, igj, gbci, gbdi, gbei, ibg(cf+dg+eh),

gbi²(cf+dg+eh)}.

6. From node 6, the input test sequences are: {h,

ih, ihb, ihj, hbci, hbdi, hbei, ibh(cf+dg+eh),

hbi²(cf+dg+eh)}

7. From node 7, the input test sequences are: {i,

ib, ij, bci, bdi, bei, ib(cf+dg+eh),

i²b(cf+dg+eh), i²b²(cf+dg+eh)}.

8. From node 8, the input test sequences are:

{0}.

Conclusion
By using the concept of basic path testing

technique and graph matrices method, firstly the

computational models of web application can be built.

In this graph, web page’s coding statements can be

considered as nodes of control flow graph and links can

be considered as input conditions provided at each node.

And then with the help of basic path testing and graph

matrices, total number of independent paths can be

determined. Not only can this, but complexity of the

program structure also be found out using this method.

Next step is to generate test cases for the normal

execution of the program.

In this paper, we have carried out, doing depth analysis

of path testing, that no matter graph matrix method is

time consuming but it covers more number of test

sequences as compare to basis path testing. Graph

matrices cover all the possible set of independent paths

between all nodes. The set of all paths between all

nodes is easily expressed in terms of matrix

operations.

Next, graph matrix is the automated tool for finding

set of all paths whereas basis path testing is a manual

technique of finding the test sequences. Basis path

testing is a fast method while graph matrix is a time

consuming technique. But, the probability of errors is

more in graph matrix than in basis path testing.

References

1. Du Qingfeng, Dong Xiao, ” An Improved

Algorithm for Basis Path Testing”, Shanghai,

China, pp. 175-178, ©2011 IEEE

http://www.ijesrt.com/

[Rana, 3(7): July, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[746-750]

2. Arthur H. Watson and Thomas J. McCabe,

“Structured testing: a testing methodology

using the cyclomatic complexity metric,”

NIST Special Publication, September 1996.

3. Zhang Zhonglin, Mei Lingxia,” An Improved

Method of Acquiring Basis Path for Software

Testing”, in 5th International Conference on

Computer Science & Education, Hefei, China.

August 24–27, 2010, pp. 1891-1894, ©2010

IEEE

4. Rajiv Chopra, “Software Testing (A Practical

Approach) Software Verification Software

validation”, Third Edition 2010, Katson

Books, ISBN: 978-81-89757908, pp.113-114.

5. Beizer, B.,”Software Testing Techniques”, New

York: Van Nostrand Reinhold, 1983, pp. 37-

73.

6. Du Qingfeng and Li Na, “White box test basic

path algorithm,” Computer Engineering, vol.

35, Augest 2009, pp. 100–102,123.

7. Zhongsheng Qian, Huaikou Miao & Hongwei

Zeng, “A practical web testing model for web

applications testing”, Signal-Image

Technologies and Internet-Based System,

2007, Third International IEEE Conference

on 16-18 Dec. (2007), Shanghai , pp.434-441.

8. Roger S. Pressman, “Software engineering: A

practitioner’s approach”, Sixth Edition,

International Edition 2005, Mc Graw Hill,

ISBN: 007-124083-7, pp. 595-600.

http://www.ijesrt.com/

